文章阐述了关于什么是矩阵等价,以及矩阵等价的意思的信息,欢迎批评指正。
简略信息一览:
什么是矩阵等价?
两个矩阵等价是指经过一系列的初等行变换和初等列变换后,它们可以互相转化,即它们有着相同的行最简形矩阵。矩阵等价的定义 两个矩阵等价是指存在一个可逆矩阵P,使得PA=B,其中A和B是两个等价的矩阵。
矩阵等价:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵(P、Q),使得A经过有限次的初等变换得到B。
A经过一系列初等变换等到B,称A与B等价,也就是存在可逆阵PQ使B=PAQ,那么AB秩相等。而AB相似是存在可逆阵P使B=P-1AP,由此可见相似的结论强于等价,具有的性质更多了。比如特征值相同,行列式相同。
矩阵等价 矩阵A与B等价必须具备的两个条件:(1)矩阵A与B必为同型矩阵(不要求是方阵);(2)存在s阶可逆矩阵p和n阶可逆矩阵Q, 使B= PAQ。矩阵A与B合同 必须同时具备的两个条件:(1) 矩阵A与B不仅为同型矩阵而且是方阵;(2) 存在n阶矩阵P: P^TAP= B。
矩阵等价是指两个矩阵具有相同的特征值和特征向量。矩阵等价是指两个矩阵具有相同的特征值和特征向量。对于两个n×n矩阵A和B,如果存在一个可逆矩阵P,使得PAP=B,那么我们称矩阵A和B是等价的。这意味着矩阵A和B在线性变换的意义下是相似的。
两个矩阵等价是什么意思,怎么定义的。两矩阵等价和相似又有什么关系...
1、矩阵可以通过基本行和列操作的而彼此变换。(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
2、A经过一系列初等变换等到B,称A与B等价,也就是存在可逆阵PQ使B=PAQ,那么AB秩相等。而AB相似是存在可逆阵P使B=P-1AP,由此可见相似的结论强于等价,具有的性质更多了。比如特征值相同,行列式相同。
3、等价矩阵就是你理解的那样。相似矩阵的定义是:存在可逆矩阵P,使得P(-1)AP=B,则称B是A的相似矩阵。
矩阵等价是什么?
1、两个矩阵等价是指经过一系列的初等行变换和初等列变换后,它们可以互相转化,即它们有着相同的行最简形矩阵。矩阵等价的定义 两个矩阵等价是指存在一个可逆矩阵P,使得PA=B,其中A和B是两个等价的矩阵。
2、矩阵等价:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵(P、Q),使得A经过有限次的初等变换得到B。
3、A经过一系列初等变换等到B,称A与B等价,也就是存在可逆阵PQ使B=PAQ,那么AB秩相等。而AB相似是存在可逆阵P使B=P-1AP,由此可见相似的结论强于等价,具有的性质更多了。比如特征值相同,行列式相同。
4、矩阵等价是指两个矩阵具有相同的特征值和特征向量。矩阵等价是指两个矩阵具有相同的特征值和特征向量。对于两个n×n矩阵A和B,如果存在一个可逆矩阵P,使得PAP=B,那么我们称矩阵A和B是等价的。这意味着矩阵A和B在线性变换的意义下是相似的。
什么是矩阵等价
1、矩阵等价:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵(P、Q),使得A经过有限次的初等变换得到B。
2、两个矩阵等价是指经过一系列的初等行变换和初等列变换后,它们可以互相转化,即它们有着相同的行最简形矩阵。矩阵等价的定义 两个矩阵等价是指存在一个可逆矩阵P,使得PA=B,其中A和B是两个等价的矩阵。
3、A经过一系列初等变换等到B,称A与B等价,也就是存在可逆阵PQ使B=PAQ,那么AB秩相等。而AB相似是存在可逆阵P使B=P-1AP,由此可见相似的结论强于等价,具有的性质更多了。比如特征值相同,行列式相同。
4、矩阵等价是指两个矩阵具有相同的特征值和特征向量。矩阵等价是指两个矩阵具有相同的特征值和特征向量。对于两个n×n矩阵A和B,如果存在一个可逆矩阵P,使得PAP=B,那么我们称矩阵A和B是等价的。这意味着矩阵A和B在线性变换的意义下是相似的。
关于什么是矩阵等价和矩阵等价的意思的介绍到此就结束了,感谢你花时间阅读本站内容,更多关于矩阵等价的意思、什么是矩阵等价的信息别忘了在本站搜索。